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abstract. — Measurements have been conducted at two antenna ranges to assess whether in-
ternal range errors allow determination of the electrical location (phase center) of a Global 
Positioning System receiving antenna with submillimeter accuracy in the 1.1–1.6 GHz 
band. We first measured antennas in the tapered far-field chamber at Goddard Space Flight 
Center and later duplicated some of those measurements in the spherical near-field cham-
ber at Nearfield Systems, Inc. (NSI).

In general, the two ranges perform about equally well. Position errors due to thermal noise, 
mounting uncertainty, and instrumental drift are negligible at both. Multipath power at 
Goddard is about 40 dB below the direct signal but could significantly corrupt measure-
ments at boresight angles near 90 deg. At NSI, multipath is about 50 dB below the direct 
signal after the application of software that detects it and reduces the effect.

Direct comparison of phase centers calculated for identical configurations at the two ranges 
gives consistent results with a standard deviation of 0.58 mm. However, an offset of 6.5 mm 
remains unexplained. More detailed comparison of antenna phases over a range of direc-
tions also shows submillimeter consistency.

I. Background

The proposed Geodetic Reference Antenna in Space (GRASP) mission [1] undertakes to 
improve the definition of the Terrestrial Reference Frame (TRF) by making precise collocated 
measurements of the four space geodetic techniques that contribute to the TRF: global 
navigation satellite systems (GNSSs), very long baseline interferometry (VLBI), satellite 
laser ranging (SLR), and Doppler orbitography and radiopositioning integrated by satel-
lite (DORIS). In order to relate the four techniques with the required accuracy of 1 mm, it 
is necessary know the positions of all the sensors, relative to each other and to the center 
of mass of the spacecraft, with even smaller uncertainty. These positions are generally a 
combination of several mechanical offsets plus the offset of the effective electrical or optical 
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location of the sensor relative to a reference location that typically is at an easily accessible 
place on the physical structure of the sensor. Each of these components contributes to the 
total error in the location of the sensor, but in this article we are concerned only with the 
final piece: the sensor’s effective location in the sensor coordinate frame.

For the radio-frequency sensors, the position of the sensor is determined by measurements 
at an antenna test range of the effective location (“phase center”) of the antenna relative to 
a fiducial point on the antenna structure. In general, the “effective location” — the place 
where the antenna seems to “be” for an incoming signal — varies with the direction of the 
incoming signal in the antenna’s field of view, but for any specified field of view there is a 
particular location that minimizes the RMS distance between the actual phase center and 
that location, and that is what we refer to here as the phase center.

Calculation of the location of the phase center relies on phase measurements made at the 
range. In order to judge the accuracy of the phase center, then, we need to understand all 
the components that contribute to errors in the measured phase pattern, and how those 
errors affect the computation of the phase center. Elaborate models such as the 18-com-
ponent National Institute of Standards and Technology (NIST) model [2] for planar near-
field ranges, and its variants, have been constructed and used to evaluate specific ranges.1 
However, these range surveys are time-consuming and expensive; and there is always a 
question whether a survey, done at some time in the past, where components of the error 
budget have been painstakingly isolated and evaluated under tightly controlled conditions, 
truly applies to the current measurements. This concern is particularly apropos when the 
required accuracy of the measurements is comparable to the range’s ultimate capability, as 
it is in our case.

We have therefore adopted the more heuristic, user-centered approach of comparing 
repeated measurements of a single antenna similar to the one that GRASP will use for 
GNSS signals: measurements repeated in time, repeated with different configurations, and 
repeated at different kinds of range. For the investigation reported here, we measured our 
antenna first at a tapered far-field range, the Goddard Electromagnetic Anechoic Chamber 
(GEAC) at the Goddard Space Flight Center in Greenbelt, Maryland, and then again in the 
spherical near-field chamber of the Allen C. Newell Near-Field Antenna Measurement Facil-
ity at Nearfield Systems, Incorporated (NSI), in Torrance, California.

Certainly this method has disadvantages. Repetitions do not detect static errors at a single 
range, and fluctuations may be hard to identify with a specific source. If two ranges behave 
differently, it may be hard to associate that behavior with a specific source. Still, some error 
sources have identifiable signatures, and if results at different ranges agree at the desired 
level, we are entitled to limited confidence that those results are accurate at that same level. 
The following two sections describe the measurements that we made and our interpretation 
of the results.

1  For example, Allen C. Newell, “Range Assessment Report: NSI Near-Field Antenna Range,” Nearfield Systems, Incorpo-
rated, August 14, 2007.
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II. Measurements

A note on terminology: In what follows we will use the word “measurement” in a generic 
sense and in particular to refer to a single antenna gain or phase value in a particular direc-
tion. A series of measurements made consecutively that constitute a complete antenna 
pattern will be called a “scan.”

A. Strategy

As explained above, as ordinary users making our pattern measurements according to the 
ranges’ standard protocols, we are limited in what we can do to isolate and evaluate indi-
vidual elements of the error budget. Nevertheless, there are things we can do by making the 
same measurement in different ways that do expose range errors. Here are some errors to 
which our data are sensitive:

(1) Random errors. If we repeat a scan exactly, even in the absence of instrumental drift the 
results will differ slightly because of noise in the data. We cannot eliminate drift between 
two scans, but we can see noise within a scan by fitting a smooth curve to a limited num-
ber of contiguous points that should vary slowly and smoothly, and calculating the RMS 
residual to the fit. Rounding error also contributes to this residual. However, both gains (in 
dB) and phases (in degrees) are reported to us with three decimal places, and rounding error 
contributes negligibly to the total RMS error. For our calculations, we fitted cubic polynomi-
als to a series of 11 points (7 degrees of freedom).

A second way to estimate random noise is to perform a scan and then repeat it as exactly as 
possible. We can then calculate the RMS difference between the two measurements and di-
vide by 2 to get the standard deviation of an undifferenced measurement. This approach 
is sensitive to errors that do not affect the curve-fitting method, like instrumental drift and 
failure to reproduce the orientation of the antenna exactly; but the drift, at least, can be vir-
tually eliminated by removing a low-order polynomial fit from the differenced time series 
before calculating the RMS. We found that a linear polynomial was sufficient in all cases.

(2) Mechanical alignment. If the antenna under test (AUT) is mounted on the positioner — or 
on the GRASP spacecraft — several times, its position relative to the surrounding structure 
may vary because of play in the mounting hardware. Generally the hardware is made to fit 
snugly and is tightened consistently so that the play is negligible, but when submillimeter 
precision is needed it is prudent to determine at least an upper bound on the variability. 
We did that in one case by performing a scan, then loosening and retightening the mount-
ing bolts, and scanning again. In two other cases, we dismounted the AUT entirely, made 
unrelated measurements, and later remounted and rescanned.

(3) Instrumental drift. Circumstances such as changes in the temperature of electronic 
components and cables can cause the reported gain and phase to change from one scan to 
another and even within a single scan. Because GRASP is interested primarily in the phase 
center, gain changes are of little concern; and a constant phase offset between scans does 
not affect the phase center, because the phase-center calculation depends only of the varia-
tion of phase over the antenna’s field of view. However, drift within a scan does affect the 
reported phase pattern.
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At a far-field chamber like GEAC, there is an easy way to monitor instrumental drift on a 
fairly short time scale. Over the course of a scan, one particular point in the pattern, the 
boresight direction, is observed repeatedly at regular intervals. If the boresight phase varies 
systematically, then either (a) the instrumental phase is drifting, or (b) the range reference 
(receiving) antenna is combining orthogonal linear polarizations imperfectly to get right-
circular polarization (RCP). However, (b) imposes a characteristic signature on the pattern 
of variation, so (a) and (b) are usually distinguishable. If drift is present, we then have to ask 
how it affects the phase center and whether it is possible and necessary to reduce its effect.

At a near-field chamber like the one at NSI (see Section II.D below), the measurements  
are processed as spherical harmonics and then converted to angular coordinates for output, 
so that instrumental drift, if it exists, is smoothed over the entire scan and made undetect-
able.

(4) Chamber multipath. Chamber multipath is reflections of the test signal from surfaces and 
edges in the chamber or on its walls that interfere with the direct signal at the reference an-
tenna and thereby corrupt the pattern measurements. Of course, layers of absorber through-
out the chamber suppress most reflection. Moreover, specular reflection reverses the sense 
of circular polarization, which tends to decrease the effect further for RCP antennas like 
ours. On the other hand, the absorber is not perfect, the actual reflection or scattering is 
not generally specular, and interference is more of a problem when the direct signal probes 
the low-gain outer part of the beam while the multipath comes in near the boresight. As a 
result, multipath may well be the dominant source of range error.

In our measurements, we detected multipath in two ways. First, the way the antenna pat-
tern is sampled at far-field ranges like GEAC lets us measure a particular point in the pattern 
(other than the boresight axis) with the boresight pointing in two different directions. If 
the angle between those directions is large, as it is for measurements far from the boresight, 
then the difference between the two measurements tells us something about the magnitude 
of multipath, although it does not tell much about the location of the source. A shortcom-
ing of this method is that it is sensitive only to asymmetry in the multipath signal between 
the left and right sides of the chamber. Section III.B explains this method in detail.

Our other approach to multipath relies largely on the measurements made in the near-
field chamber at NSI. There, software called Mathematical Absorber Reflection Suppression 
(MARS) works to detect and reduce the effects of whatever multipath is present [3]. We can 
then compare the patterns before and after MARS to see what MARS thinks the multipath 
environment is at NSI, and we can compare the (presumably multipath-free) patterns with 
MARS to those obtained at GEAC to get an idea of the multipath at GEAC.

(5) Other chamber errors. The errors listed above are only the easily observed subset of the 
full list of possibilities. Some of the other errors will be negligible. Others will alias to some 
extent into the ones observed. For example, random errors in the reported angles will look 
like random noise; polarization mismatch in the reference antenna will resemble instru-
mental drift. Still other errors, like miscalibration of reference-antenna gain and curvature 
of the far-field wavefront, are undetectable at the range where they occur but do affect a 
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comparison between patterns at different ranges. We hope that we can at least show that 
the dominant error sources are small enough to allow GRASP to meet its sensor-location 
requirements.

The remaining subsections give more information about the details of our three measure-
ment sessions.

B. Session 1: Measurements at GEAC, January 2014

Our first group of measurements took place at GEAC on January 27, 2014. We used the 
tapered far-field chamber, where the distance between the AUT, which transmits, and the 
receiving antenna is about 16.8 m. Our test antenna was an Exelis (formerly Dorne & Mar-
golin) model C146-27-1 mounted on a lightweight two-ring choke. Its gain on boresight 
is 7–8 dBiC at GNSS frequencies, and it will be used out to boresight angles of 75–90 deg 
as a precision orbit determination (POD) antenna on the Constellation Observing System 
for Meteorology, Ionosphere, and Climate–2 (COSMIC-2) spacecraft constellation. In the 
chamber, the antenna was attached to a cylindrical cage that allows access to the back of 
the antenna for electrical connections; then the cage was mounted on the positioner itself, 
as shown in Figure 1.

To sample the antenna pattern over the sphere, the positioner rotates the antenna around 
two axes in the standard way for ranges of this kind. First, the operator positions the 
antenna on the horizontal head-angle axis, which is nominally the axis of circular sym-
metry of the POD antenna in Figure 1. In this article, we call the positioner’s orientation on 
the head-angle axis z by analogy with ordinary spherical coordinates, and the antenna is 
mounted so that a specific point on the antenna has a particular orientation at z  = 0 deg. 
In this way, z  can refer to directions on the antenna itself as well as the positioner. When 
the antenna rotates clockwise, as seen from the receiving antenna, z increases.

Figure 1. Exelis antenna and two-ring choke mounted in the Goddard far-field chamber.
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Having set z, the operator rotates the upper part of the positioner, and thereby the an-
tenna, around the vertical azimuth axis, which is the axis of the turntable visible just above 
the red crank in Figure 1. (This nomenclature is a little confusing, because when an antenna 
like the POD antenna in the figure is mounted on the ground with its beam pointing up, 
motion around the positioner’s azimuth axis corresponds to changes in terrestrial elevation, 
and motion around the head-angle axis corresponds to changes in terrestrial azimuth.) In 
this article, we call the positioner’s orientation on its azimuth axis i, completing the anal-
ogy with spherical coordinates. When i = 0 deg, the antenna under test directly faces the 
receiver, as shown in the figure, and as the turntable rotates clockwise, as seen from above, 
i increases.

To run a pattern, the operator sets z to 0° and i to near –180 deg; that is, rotates the 
positioner counterclockwise as seen from above until the AUT faces directly away from the 
receiving antenna. Then gain and phase data are collected at the designated frequencies as 
the antenna scans in i to near +180 deg. Next, z increases by a specified increment, zD , 
and the azimuth scan is repeated. This process generally continues until z reaches 180 deg; 
at that point the patterns have been measured over the entire sphere. Notice that the bore-
sight direction (i = 0 deg) is measured for each head angle, providing a way to monitor in-
strumental drift. Furthermore, the azimuth scan at z = 180 deg repeats the series of points 
measured at z = 0 deg, but in the opposite direction and with the boresight direction differ-
ent for corresponding points. Comparing these two series gives information about chamber 
multipath, and if the sequence of head angles continues from 180 deg through 360 deg, 
then we have two complete independent pattern measurements of the entire sphere with 
different orientations of the antenna at each point.

In Session 1, we measured z from 0 deg through 180 deg with zD  = 10 deg, and i was 
reported at 1-deg intervals from –176 deg through +176 deg for a total of 19 × 353 = 6707 
points per pattern. The range gave us patterns in the GPS bands centered at 1.17645 GHz 
(L5), 1.22760 GHz (L2), and 1.57542 GHz (L1) for both RCP and left-circular polarization 
(LCP). We also measured patterns at other frequencies, but for the analysis reported here we 
used only the three GPS frequencies and RCP (the nominal polarization of the GPS signals).

There were just three scans in Session 1 that bear on this article. The first scan, Trial 1, cov-
ered the entire sphere as described above. Trial 2 immediately followed Trial 1 but measured 
only z = 0 deg. After Trial 2, the bolts holding the antenna against the mounting bracket 
were loosened and retightened, and Trial 3 repeated Trial 2 exactly. Together, the three trials 
enable us to estimate random noise and examine instrumental drift. The azimuth scans at  

z = 0 deg and 180 deg in Trial 1 also give information about chamber multipath.

C. Session 2: Measurements at GEAC, November 2014

During the week of November 17, 2014, we returned to GEAC with a number of anten-
nas to be used on the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) 
spacecraft. These antennas included another Exelis model C146-27-1 antenna, which we 
used for the measurements relevant to GRASP. This antenna was mounted on a lightweight 
three-ring choke (slightly different from the two-ring choke used in Session 1), as shown 
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in Figure 2. We measured the antenna-plus-choke by itself (Configuration 1) and also while 
it was mounted on a mockup of the upper part of the GRACE Follow-on spacecraft, seen 
in Figure 3. Our aluminum mockup consists of an upper rectangular surface about 1.2 m 
long and 0.7 m wide flanked by two oblique wings. The upper surface has a circular hole in 
the center for the antenna-plus-choke and a trapezoidal hole modeling the well for a star 
tracker. When the antenna is mounted on the mockup, the upper surface of the choke (and 
hence the lower surface of the antenna proper) is just about coplanar with the mockup. We 
measured patterns for the antenna both with the star-tracker well completely covered by 
copper tape (Configuration 2), and with the well open (Configuration 3) as shown in Fig-
ure 3. Although we did succeed in repeating some measurements, two different attempts to 
probe chamber multipath failed because it was masked by multipath from the mockup.

D. Session 3: Measurements at Nearfield Systems, Inc., March 26, 2015

At NSI we used the Model 700S-75 spherical near-field measurement system in the Allen C. 
Newell Near-Field Antenna Measurement Facility. Figure 4 is a drawing of the positioner of 
this system, and Figure 5 shows our C146-27-1 antenna and three-ring choke mounted in 
the chamber. Although the rotations of the AUT in this chamber are basically the same as 
those at GEAC, the chamber is different, and the processing of the near-field data is entirely 
different; so measuring here allowed us to repeat the GRASP measurements from Session 2 
and compare the results to see how well they agree.

Figure 2. Exelis antenna and three-ring choke mounted in the Goddard far-field chamber.
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Figure 3. Antenna mounted with mockup of the GRACE Follow-On spacecraft at Goddard.

Figure 4. Antenna positioner of the Model 700S-75 near-field measurement system at NSI.



9

Our program was first to repeat the GEAC measurement of Configuration 1 (Scan 1), then 
redo Configuration 2 (Scan 2), then Configuration 3 (Scan 3), and finally reprise Scan 1 
to check repeatability (Scan 4). The range and resolution of the measurements did differ 
slightly from Session 2. For purposes of comparison, we generally used the intersection of 
the two data sets: i from –179 deg through +179 deg at 1-deg increments, z from 0 deg 
through 180 deg at 10-deg increments, and the center frequencies of the GPS L1, L2, and 
L5 bands.

Figure 5. Antenna mounted in the NSI spherical near-field chamber.

As mentioned above in Section II.A, NSI also provides MARS software to reduce the effect 
of chamber multipath. We have pattern measurements both before and after the MARS ad-
justments and have examined their effect on the NSI data as well as what they may reveal 
about multipath at GEAC.

III. Results

This section presents our results for random errors, mounting repeatability, instrumental 
drift, and chamber multipath.

A. Random Errors and Instrumental Drift

Random noise in this context should mostly be thermal noise on the electrical signals 
being measured. We expect it to have a nearly Gaussian distribution, to be statistically inde-
pendent at all measurement points, and to affect gain and phase measurements in basically 
the same way. There is a small contribution to random noise from round-off error, but since 
gain (in dB) and phase (in degrees) are reported to three decimal places, that component 
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should be negligible. There could also be a tiny superficially random contribution from fail-
ure to measure at exactly the reported values of i  and z , but that component is probably 
biased and highly correlated.

We estimated random noise in two ways: first by fitting a cubic polynomial to 11-point 
sequences of adjacent data points, and second by attempting to repeat a measurement 
exactly.

1. Estimates of random errors from cubic least-squares fits

In Session 1, we fitted cubic polynomials to both gain and phase data from our POD 
antenna at L1, L2, and L5, z  = 0 deg, and intervals in i of –5 deg through +5 deg, 15 deg 
through 25 deg, and 35 deg through 45 deg. Then we calculated an RMS residual, account-
ing for the correct number of degrees of freedom: 
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where

D 	 is the RMS scatter of the measurements relative to the polynomial, accounting for 
the correct number of degrees of freedom, in the same units as the measurements,

n 	 is the number of measurements, in this case 33 = (3 sets of points) × (11 points per 
set),

mi 	 is the i-th measurement, whether gain or phase,

iP 	 is the value of the appropriate cubic polynomial (fitted by least squares to a series 
of 11 points), evaluated at the argument of mi, and

pn 	 is the number of fitted parameters, in this case 12 = (4 coefficients per cubic poly-
nomial) × (3 polynomials).

D can then be converted to a voltage signal-to-noise ratio VR . For gains in dB,
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Table 1 gives the results.

Certainly these residuals are insignificant relative to GRASP’s requirements, and it would 
be surprising if they were not, since this is a very manageable error source. The agreement 
of the SNRs derived from the gain and phase measurements, at least at L5 and L2, gives us 
confidence that we basically understand what is going on here. As expected, the contribu-
tion of round-off error, an RMS of /. .0 001 12 0 00029=  (in units of either dB or degrees) is 
negligible.

(1)

(2a)

(2b)
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Table 1. Gain and phase residuals from Session 1 with calculated SNRs.

Frequency 
Band

RMS Gain  
Residual, dB

∑V , Voltage SNR from 
Scatter of Gains

RMS Phase  
Residual, deg

RMS Phase  
Residual, mm

∑V , Voltage SNR from  
Scatter of Phases

	 L5	 0.004207	 2064	 0.03000	 0.02123	 1910

	 L2	 0.004500	 1930	 0.03058	 0.02074	 1874

	 L1	 0.003732	 2327	 0.01441	 0.00762	 3976

We analyzed data from Session 2 in the same way, this time using data from the second 
POD antenna and choke ring described in Section II.C. Table 2 gives the results.

These numbers differ significantly from those in Table 1: The L2 and L5 gain residuals are 
about twice as large, and the SNRs inferred from gain and phase no longer agree even ap-
proximately. We have no explanation for this behavior; nevertheless, the phase errors in 
millimeters are still insignificant relative to GRASP’s requirements.

2. Estimates of random errors and instrumental drift from repeated measurements.

We can estimate random errors in a second way by making the measurements twice and 
comparing the results. This approach differs from the first in that it is subject to errors that 
are not strictly random. For example, instrumental drift can occur between the scans, and 
as the interval between scans increases, we can expect the drift to accumulate. Also, if the 
antenna is dismounted between the scans, then it is possible that it may be remounted in 
a slightly different location, which will affect at least the phase measurements. Hence, by 
repeating scans under various circumstances and comparing the results among themselves 
and with the results of curve fitting we can get an idea of some additional effects that can 
cause phase-center estimates to differ.

In Session 1, we performed the three trials described above in Section II.B. Figure 6 shows 
the series of phases measured at the three GPS frequencies during Trial 1, in the boresight 
direction (i = 0 deg), for sequential values of z. A constant has been added to each series 
to make the mean value zero for easier comparison. The figure also shows a quadratic fit to 
each series, with the coefficients displayed for quantitative comparison.

Systematic variation of the kind seen here must be the result of either instrumental drift or 
an imperfect combination of linear polarizations to give RCP and LCP. However, the latter 
has a distinctive sinusoidal signature with a period of 180 deg in z that does not appear 
here, so what we see in the figure must be genuine drift. It is interesting that the drift rate 
is about the same at all three frequencies (that is, it does not scale with frequency), and 
it is changing at a fairly constant rate throughout the scan. Using the polynomial fit to 
L5 for calculation, we find that the change in instrumental phase over the length of the 

Table 2. Estimated random noise in gain and phase from Session 2 with calculated SNRs.

Frequency 
Band

RMS Gain  
Residual, dB

∑V , Voltage SNR from 
Scatter of Gains

RMS Phase  
Residual, deg

RMS Phase  
Residual, mm

∑V , Voltage SNR from  
Scatter of Phases

	 L5	 0.008212	 1057	 0.10164	 0.07195	 564

	 L2	 0.008279	 1049	 0.06330	 0.04294	 905

	 L1	 0.003354	 2589	 0.05890	 0.03114	 973
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Figure 6. Instrumental drift and polynomial fits at 0 deg azimuth.

scan (about 9 min) is 0.505 deg – (–0.911 deg) = 1.416 deg, and the change in phase rate 
is ( ). .2 0 00003978 180 2 578

2# #- =  deg/scan. Additional analysis of Trials 2 and 3, not 
shown here, indicates that this drift in phase rate continues at about the same level during 
those measurements.

The issue for GRASP, then, is what effect a drift at this level has on the solved phase cen-
ter. To answer this question, we compared phase center solutions for Trial 1 calculated in 
two ways at the three frequencies. First, we used the phase measurements just as they were 
given to us, and second we forcibly removed the apparent drift by subtracting from the 
raw data the polynomials shown in Figure 6. Table 3 shows the comparison in terms of the 
parameters of the phase-center fit.
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Table 3. Differences between phase-center solutions with and without measurement drift.

 
L1

 
L2 L5

	 ∆ζ0, mm	 –0.5448	 –0.7860	 –0.6248	

	 ∆d, mm	 0.0001	 –0.0003	 –0.0001	

	 ∆r, mm	 –0.0009	 –0.0104	 –0.0050	

	 Raw RMS residual, deg	 2.9888	 1.1616	 1.1694

	 Detrended RMS residual, deg	 2.9581	 1.0172	 1.0540

The phase-center model is described in more detail below in Section III.C. In Table 3, 0g  is a 
phase constant not directly related to the phase-center location, d specifies the location of 
the phase center along the z  axis, r  is the distance from the phase center to the z axis, and 
the residuals are the difference between the observed and model phases. The table shows 
that the change (D) in the estimated phase-center location caused by instrumental drift, at 
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least in this case, is negligible (relative to the GRASP requirement) in the parameters that 
specify the actual location of the phase center. The global phase constant absorbs most of 
the effect, and the residuals improve about 8 percent on the average.

In order to calculate a statistic from repeated data that better reproduces the random noise 
calculated from polynomial fits (Section 2.A.1), we can remove the effect of drift by differ-
encing our two data sets and then subtracting a fitted offset and slope from the difference, 
just as we did above for Trial 1. Finally, we have to divide the RMS of the resulting sequence 
by 2  to get the equivalent RMS for a single data set. We did this calculation for both gains 
and phases in Trials 1 and 2, using only z = 0 deg (since that is all we had for Trial 2) and  
is from –40 deg through +40 deg. Table 4 gives those results. 

Table 4. Estimated random noise from differenced data with drift removed, Session 1.

Frequency 
Band

RMS Gain  
Residual, dB

∑V , Voltage SNR from 
Scatter in Gains

RMS Phase  
Residual, deg

RMS Phase  
Residual, mm

∑V , Voltage SNR from  
Scatter in Phases

	 L5	 0.005652	 1536	 0.03672	 0.02599	 1560

	 L2	 0.003976	 2184	 0.02817	 0.01911	 2034

	 L1	 0.002706	 3210	 0.01328	 0.00702	 4316

These values are consistent with those in Table 1, indicating that we have done an ad-
equate job of removing the drift. However, we need to be circumspect in interpreting RMS 
residuals in terms of SNRs for repeated measurements, because those residuals can contain 
systematic (correlated) behavior caused by slight differences in the circumstances of the 
measurements.

As mentioned above, we used Trial 3 to check whether loosening and retightening the 
AUT’s mounting bolts (essentially remounting the antenna) would affect the measurements 
perceptibly. To that end, we formed differenced phases with linear drift removed for Trial 3 
relative to Trials 1 and 2, exactly as described above for Trial 2 relative to Trial 1, and com-
pared the RMS residuals for all three differences at the three frequencies. The residuals for 
the differences involving Trial 3 are slightly higher than those for Trial 2 relative to Trial 1, 
but the difference is not statistically significant (passes the F test for equality of the varianc-
es at the 35 percent level). As expected, mounting variability is apparently not a significant 
component of the chamber error budget at the level relevant to GRASP.

Using data from Session 2, we followed the same procedure to compare two nominally 
identical data sets. In this case, the AUT included the GRACE-FO mockup, and we used 
data from i = 40 deg through 0 deg and z = 0 deg through 170 deg. Most significantly, for 
the comparison the AUT was removed from the positioner and other measurements were 
performed before we remounted the original AUT for the second scan. Table 5 gives those 
results.

These numbers are roughly comparable with Table 2, and they show much better consis-
tency among the frequencies. Like Table 2, they show greater noise than Session 1, but here 
we have a probable explanation: A few values of head angle show conspicuous oscillations 
in the differenced gain and phase that apparently result from slight differences in mul-
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Table 5. Estimated random noise from differenced data with drift removed, Session 2.

Frequency 
Band

RMS Gain  
Residual, dB

RMS Phase  
Residual, deg

RMS Phase  
Residual, mm

	 L5	 0.01049	 0.08161	 0.05777

	 L2	 0.00969	 0.06727	 0.04564

	 L1	 0.01023	 0.09531	 0.05038

Figure 7. Differenced gain for nominally identical scans at NSI, L2 frequency.
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tipath from the edges of the mockup. Those differences probably arise because the mockup 
is mounted slightly differently during the two scans that are being compared. Because of 
these oscillations, it is no longer possible to treat the variance as entirely random and inter-
pret it in terms of SNR.

If we had been able to compare measurements of the antenna without the mockup, the dif-
ferences between the two scans would probably have been significantly smaller. But even at 
the level observed, the measurement uncertainties pose no threat to GRASP’s requirements.

During Session 3, we ran Scan 4 specifically for comparison with the nominally identical 
Scan 1. As an example, Figure 7 shows the difference between the gains measured at the L2 
frequency in the two scans for seven values of z. This plot is typical of NSI data, with its 
smooth variation looking like the difference between slightly different sums of spherical 
harmonics up to some moderate degree. At NSI, the effect of instrumental drift has been 
suppressed, so that the points at boresight angle 0 deg are all exactly the same. Also the 
values for z = 180 deg are exactly, not approximately, the reverse of the values at z = 0 deg, 
depriving us of our most convenient tool for detecting chamber multipath.
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Table 6. Bias and standard deviation of repeated gain measurements at GEAC and NSI.

GEAC NSI
  

GEAC NSI

	 L5	 –0.00913	 0.05112	 0.01049	 0.00560

	 L2	 –0.00045	 0.04225	 0.00969	 0.00665

	 L1	 0.01463	 0.06236	 0.01023	 0.01062

Bias, dB  Standard Deviation, dB

Table 6 gives the gain results for Session 3 next to the results for the same antenna (but 
with the spacecraft mockup) from Session 2. Here again, the standard deviations of the dif-
ferenced data have been divided by 2  to give a value applicable to undifferenced data. For 
the NSI data, we used is from –40 deg through +40 deg and all the zs from 0 deg through 
175 deg. Here, the standard deviation of the differences is somewhat better at NSI than at 
GEAC, where the repeated measurement was apparently affected by a slight difference in 
the geometry of the antenna plus mockup, as mentioned above. On the other hand, there 
is a bias of about 0.05 dB at NSI (conspicuous in Figure 7) that is practically absent at GEAC. 
(This bias remains when the MARS adjustments are applied.)
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Figure 8. Differenced phase for nominally identical scans at NSI, L2 frequency.

Figure 8 shows the corresponding difference of the phases measured at L2 in Scans 4 and 1 
at NSI. Again we see the smooth variation in i and systematic dependence on z, but  
there is also a surprising slope in the neighborhood of i = 0 deg that is most prominent 
near z = 90 deg and absent or slightly reversed at 0 deg and 180 deg. This behavior appears 
also at L5 and L1 (not shown), and it remains at about the same level after NSI’s MARS 
adjustments, although it affects the three frequencies differently. Table 7 summarizes the 
statistics of the phase differences at GEAC and NSI.
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	 L5	 0.08276	 0.08944

	 L2	 0.07355	 0.08543

	 L1	 0.07706	 0.06559

Table 7. Standard deviation of repeated phase measurements at GEAC and NSI.

GEAC NSI
Standard Deviation, mm

Here, as in Table 6, the underlying data are made as much alike as possible: at GEAC, is 
from –40 deg through 0 deg and zs from 0 deg through 170 deg; at NSI, is from –40 deg 
through +40 deg and zs from 0 deg through 175 deg. For phases, a constant bias does not 
affect the phase center calculation, so only the standard deviations are listed in Table 7.  
Although the patterns of the differences at the two ranges are quite different, the scale of 
the variations is very similar and not a significant source of error for GRASP.

 
B. Chamber Multipath

As we began this investigation, we expected that signal multipath would dominate the 
chamber error budget and that random errors, instrumental drift, and misalignment would 
be minor or insignificant contributors. In fact, the data bear out that expectation. Because 
of the difference between far- and near-field ranges, we used different methods at GEAC and 
NSI to detect multipath, as described in the following subsections.

1. Multipath detection at GEAC

At Goddard, the series of azimuth angles at head angles 0 deg and 180 deg measure exactly 
the same points in the antenna pattern but in opposite directions. If only the direct signal 
is present, and if we reverse the order of the points at z  = 180 deg, in principle we should 
reproduce the sequence at z = 0 deg exactly, and the difference between the two sequences 
will be identically zero. However, multipath signals from fixed locations in the chamber do 
not reverse. To quantify these relations, suppose that the measured signal (either gain or 
phase) ST  consists of a direct component DS  and a multipath component SM , and we call 
the difference of the two sequences SD. Then

S SD D180 0i i- =- -_ _i i
and	

,S SM M180 0 !!i i=- -_ _i i

as described above, where the number in the subscript indicates the value of z  at which the 
signal is measured, and i is the azimuth angle. It then follows that

S S S, ,T T180 0i i i-= -D _ _ _i i i

or	

.S S S S S S S, , , , , ,D M D M M M180 180 0 0 0 0i i i i i i i= - + - - + = - -D _ _ _ _ _ _ _i i i i i i i8 8B B

(3a)

(3b)

(4a)

(4b)
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That is, the difference of the reversed cut at z = 180 deg and the forward cut at z = 0 deg 
is twice the odd part of SM. Two consequences are apparent: SD  is insensitive to the even 
component of SM (meaning multipath originating equally from the left and right sides of 
the AUT, or from directly above or below), and it does not tell us which side of the AUT the 
odd component is coming from. Still, this method gives us a good idea of the magnitude of 
the effect.

It is worth noting also that going beyond z  = 180 deg to compare other cuts 180 deg apart 
does not add much information to the first comparison, since all the cuts move the anten-
na horizontally in the chamber and therefore respond to about the same multipath signals.

Figure 9 is a plot of SD  gain calculated from measurements of the Exelis C146-27-1 antenna 
during Session 1. The effect is generally less than 0.2 dB out to about 60 deg boresight angle 
but approaches 1 dB at 90 deg. More interesting to GRASP is Figure 10 showing the cor-
responding phase multipath. Here again, the effect is relatively small (less than 1 deg) at 
all frequencies out to about 60 deg azimuth angle, but it increases to about 3 deg at the L2 
and L1 frequencies and 90 deg azimuth. Together with the gain plot, this increase suggests 
the presence of a significant multipath source to either the right or left of the positioner. 
The phase effect is troubling if GRASP intends to make GNSS measurements much beyond 
60 deg boresight angle, because 3 deg corresponds to 1.6 mm at L1.

Figure 11 is a plot of gain data generated in exactly the same way from a scan of the Exelis 
C146-27-1 antenna during Session 2. Although the antenna and choke ring are slightly 

Azimuth Angle q, deg

G
ai

n 
D

is
cr

ep
an

cy
, d

B

–90 –75 –60 –45 –30

L5

L2

L1

–15 0 15 30 45 60 75 90

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

–0.4

–0.6

–0.8

–1.0

Figure 9. Gain multipath at GEAC from measurements at different orientations, Session 1.
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Figure 10. Phase multipath at GEAC from measurements at different orientations, Session 1.
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Figure 11. Gain multipath at GEAC from measurements at different orientations, Session 2.
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Figure 12. Phase multipath at GEAC from measurements at different orientations, Session 2.

different, the chamber multipath looks virtually the same as Figure 9. The corresponding 
phase multipath in Figure 12 also resembles that seen in Session 1, although the amplitude 
of the variation at L1 is somewhat larger.
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Figures 11 and 12 reinforce the impression that there is a significant multipath source to 
one side or the other of the positioner. Indeed, we know that there is a door and hardware 
for a compact chamber on the left that could be the source. From the magnitude of the 
offsets in the figures, we can estimate how strong that source is relative to the direct signal. 
In the case of the gain multipath, we have (compare Equation 2)

,log
P
P 20 10 1

/M

D

P
10

20= -D_ i

	
where /P PM D is the ratio of power in the multipath signal to power in the direct signal, in 
dB, and PD  is the gain change (considered positive) induced by multipath, in dB.

Estimating from phase,

,logP
P

20 180D

M
10

r zD
= d n

where zD  is the phase change caused by the multipath, in degrees.

We want to evaluate the multipath changes at a boresight angle where the supposed mul-
tipath source is near the center of the beam, but not so far out that the gain of the direct 
signal is very weak and unreliable. If we pick about 60 deg and use a rough average of the 

(5a)

(5b)
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three frequencies, then PD  ≈ 0.15 dB and zD  ≈ 1 deg, leading to /P PM D ≈ –35.1 dB from 
the gain equation and –35.2 dB from the phase equation. The agreement is mostly fortu-
itous, but it does reassure us that we have some idea of what is happening here.

Remember also that –35 dB is the power in the multipath signal relative to the direct signal 
at 60 deg boresight angle, which is about 8 dB (again, a rough average over the three fre-
quencies) down from the value on boresight. So it looks as though the multipath is actually 
something like 43 dB below the direct signal — maybe more like 40 dB if we account for 
the fact that the multipath signal is not on boresight either. This is about the level at which 
multipath was measured when the range was certified at 1750 MHz.2

We also tried to probe multipath in two other ways during Session 2. Both attempts in-
volved the same Exelis POD antenna mounted on the GRACE-FO mockup. Our first strategy 
was to continue the head angle rotation from 180 deg through 350 deg, measuring each 
point in the pattern (except the boresight direction) at two different orientations of the 
boresight. The second strategy was to do a complete scan in the normal configuration, and 
then repeat the scan with the antenna on a bracket that was 15 cm longer. In this way, each 
point in the pattern would be measured at two different locations in the chamber separated 
by 15 cm, and the two sets of results would reflect the different interactions of the direct 
and reflected signals at the two locations. The strategies were sound, but the execution 
failed because in both cases the observed multipath came predominantly from the moving 
mockup rather than the stationary chamber. If we had run the scans without the mockup, 
they would have given us the information we expected.

2. Multipath detection at NSI

Because of the way the data are processed at NSI, we cannot see the effect directly in the 
reported patterns, as we do at GEAC. But NSI has the MARS software that undertakes to 
remove the effect of multipath, so we can get an idea of the size of the multipath signal by 
examining what it does to the data. NSI estimates that at GPS frequencies MARS reduces the 
effect of multipath from about 30 dB below the direct signal to 50 dB below.3

As a typical example, Figure 13 shows the change in gain calculated by MARS at our three 
frequencies for Scan 1, the simplest configuration, as a function of i  for z = 0 deg. The oth-
er three scans show similar behavior. The maximum correction is something like 0.12 dB, a 
little less than we see in Figure 11 for GEAC. Equation (5a) then says the multipath signal 
is 37.1 dB weaker than the direct signal. Figure 14 shows the corresponding differences 
in phase before and after MARS. Again, the multipath looks a little weaker than at GEAC. 
If the maximum is 0.7 deg, then Equation (5b) gives a multipath level 38.3 dB below the 
direct signal, and again the two data types agree rather well. Of course, all these computa-
tions are casual and only semi-quantitative, but that is as much as the data really justify. On 
the whole, NSI looks a little better than GEAC without MARS, and with MARS multipath 
should not be a concern at all at NSI.

2 Victor Marrero Fontanez, GEAC, personal communication, September 18, 2015.

3 Pat Pelland, NSI, personal communication, September 17, 2015. 	
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Figure 13. Gain adjustments made by MARS, Scan 1, 0 deg head angle.
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Figure 14. Phase adjustments made by MARS, Scan 1, 0 deg head angle
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C. Direct Comparison of GEAC and NSI Results

Ultimately we can satisfy ourselves that a range is giving GNSS antenna locations accurate 
to the submillimeter level needed by GRASP only by comparing that range’s locations to 
those measured elsewhere and finding agreement at the required level. Of course, agree-
ment does not prove that the locations are correct, but statistically it constrains the plausi-
ble range of error, particularly as the number of ranges increases. For that reason, regardless 
of the limits we estimate for individual error sources, only direct comparison of the loca-
tions computed from the GEAC and NSI measurements can provide convincing evidence 
that the ranges are performing adequately.

For processing GNSS phase measurements in orbit, the “location” of the antenna on the 
GRASP spacecraft, to first order, is the computed phase center. However, the effective loca-
tion of the antenna depends on the direction of the received signal, and the phase center  
is only a global approximation to that; so more rigorous processing uses an antenna loca-
tion that combines the phase center with a residual phase that restores the exact antenna 
phase in the relevant direction. Hence, a proper comparison of GEAC and NSI phase mea-
surements involves both the phase centers and the residual phases. Here we present phase-
center results for all three frequencies and all four scans at NSI along with their counter-
parts at GEAC, and we compare residual phases for one particular case. First, however,  
we briefly compare gain results at the two chambers.

Figure 15 shows the difference of the NSI (with MARS) and GEAC gains at the three GPS 
frequencies for NSI Scan 1 (no mockup), and Figure 16 shows Scan 2 (with mockup, star-
tracker well covered). Scan 3 closely resembles Scan 2, and Scan 4 is (as expected) practically 
identical to Scan 1. The comparison before MARS looks much the same. In general, the 
agreement is remarkable. Chambers generally claim accuracy at the 0.5-dB level, but here 
the differences do not approach that except at large boresight angles. Incidentally, there is 
evidence here, especially in Figure 15, that a real difference exists at positive, not negative, 
azimuth angles. Figures 11 and 12 do not permit that distinction, but this plot more clearly 
implicates the adjacent compact range at GEAC in the multipath seen there.

Comparing phases at two ranges is harder than comparing gains. Gains fundamentally are 
what they are and can be compared directly. The pattern of measured phases, however, 
depends on the three-dimensional offset of the antenna relative to the intersection of the 

i and z axes of the positioner, and that is inevitably different at different ranges. We can 
compensate for the difference if we know those relative positions accurately, but we do not 
know that difference well without computing the location of the phase center (relative to 
the intersection of axes) at the two ranges. Therefore, that computation needs to precede a 
detailed comparison of phases and especially phase residuals.

Our phase-center computation is conceptually simple. We begin by assuming that the 
wavefronts are planar throughout the entire range of motion of the AUT and normal to the 

z axis of the positioner at i = 0 deg. We also impose the convention that the measured 
phase decreases as the AUT moves away from the chamber antenna that is either trans-
mitting to or receiving from the AUT. The phase model then describes the location of the 
AUT’s phase center as a function of i and z  with respect to a chamber coordinate frame 
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Figure 15. Difference between gains measured at GEAC and NSI with MARS, Scan 1.
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Figure 16. Difference between gains measured at GEAC and NSI with MARS, Scan 2.
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whose origin is at the intersection of axes. The principal directions are along the i (nomi-
nally vertical) axis (the z coordinate); the z (horizontal) axis, y ; and x y z#=t t t  (also horizon-
tal). Unit vector xt  points to the right as seen from the front (where the chamber antenna is), 

yt  points away from the chamber antenna, and zt  is up, as shown in Figure 17.

Figure 17. Geometry of the phase-center model.
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Our phase model then involves five parameters. Parameter 0g  is a global offset equal to 
the phase that would be measured with the phase center at the origin of coordinates (or 
anywhere else in the x z-  plane). The remaining parameters are shown in the figure: d and 

{ are polar coordinates that give the location of the phase center in the x y-  plane if r is 0. 
Finally, r and j are polar coordinates that give the location of the phase center relative to 
the z axis. With i and z = 0 deg, j increases from 0 deg at the x+  axis, to 90 deg along the 

z-  axis.
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0g  is a nuisance parameter that has no direct bearing on the phase center. For our antennas, 
{ is either near 0 deg, meaning that the phase center is in front of the intersection of axes, 
or near ±180 deg, meaning that the phase center is behind the intersection of axes; and r is 
always on the order of a millimeter or less, generally consistent with the phase center being 
on the geometric boresight axis, so we do not need to pay much attention to r  and j. That 
leaves d  as our primary interest in comparing solutions.

With the foregoing definitions, the phase model is

,cos sin cosd r0g g i { i jz= + + + +_ _i i

where all the fitting parameters have been defined above.

Equation (6a) can be rewritten as

,sin cos sin sin cos sin0 1 2 3 4g g g i g i g z i g z i= + + + +

	
where ,sind1g {= - ,cosd2g {=  ,sinr3g j= -  and ,cosr4g j=  so that the least-squares 
solution is linear. Then the parameters of interest can easily be computed from the fitting 
parameters ig . Each fit uses the phase data from i = 0 deg through 75 deg and z from 0 deg 
through the largest value less than 180 deg. The data are weighted in proportion to sini so 
that equal solid angles are weighted equally.

These fits give us the locations of the phase centers for the various configurations and fre-
quencies in the chamber frame with its origin at the intersection of the i and z axes of the 
positioner. For use on the spacecraft, or for comparison of the chambers, we must translate 
those coordinates to a frame defined with respect to the physical structure of the antenna. 
In our case, the origin of the antenna frame is the mechanical center of the back surface 
of the choke ring. Both chambers did surveys to determine the three-dimensional offset 
between the two frames. GEAC did careful laser measurements at the time of our testing 
and found the antenna reference point to be 89.2 mm behind the chamber origin, with 
a negligible component perpendicular to the boresight axis. At NSI, the calculation was 
slightly more complicated: The plate on their positioner to which our mounting bracket 
was bolted was 794.44 mm behind the intersection of axes, and our mounting bracket 
extended 374.86 mm in front of that, for a net offset of 419.58 mm. There again, the offset 
perpendicular to the boresight axis was negligible.

We applied the chambers’ respective offsets to the least-squares phase centers for the four 
scans at NSI (with and without MARS) and their counterparts at GEAC with the results in 
Table 8. These offsets affected only the d parameter (strongly) and the { parameter (slight-
ly), not r  or j.
	

In the table, we show solutions for GEAC, for NSI without MARS, and for NSI with MARS. 
Scans 1 and 4 are grouped together for easy comparison because they are nominally identi-
cal, and a single scan at GEAC corresponds to both. The { column is not interesting: All the 
phases are very close to zero. Likewise, the rs are all small, and despite some correlations 
between measurements that hint at real offsets, we do not need to pay much attention to  

(6a)

(6b)
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Table 8. Estimated phase-center locations in the antenna frame from GEAC and NSI.

NSI Scan 
Number

How  
Measured

d,  
mm

ϕ,  
deg

r,  
mm

ϑ,  
deg

RMS Residual,  
mm

	 L5	 Scan 1	 GEAC	 107.855	 –0.056	 0.376	 –103.282	 1.312

			   NSI no MARS	 101.999	 0.008	 0.453	 –111.079	 1.364

			   NSI with MARS	 101.344	 0.000	 0.421	 –109.628	 1.221

		  Scan 4	 GEAC	 107.855	 –0.056	 0.376	 –103.282	 1.312

			   NSI no MARS	 102.084	 –0.007	 0.152	 –173.815	 1.382

			   NSI with MARS	 101.580	 –0.007	 0.132	 –171.347	 1.270

		  Scan 2	 GEAC	 105.948	 0.209	 0.447	 –138.174	 1.551

			   NSI no MARS	 99.609	 0.083	 0.183	 –17.504	 1.541

			   NSI with MARS	 99.645	 0.082	 0.187	 –17.829	 1.540

		  Scan 3	 GEAC	 105.252	 –0.012	 0.262	 157.117	 1.950

			   NSI no MARS	 98.924	 0.026	 0.295	 46.148	 1.959

			   NSI with MARS	 98.969	 0.026	 0.295	 45.483	 1.962

	 L2	 Scan 1	 GEAC	 95.320	 0.000	 0.309	 –65.740	 1.304

			   NSI no MARS	 88.675	 0.044	 0.673	 0.673	 1.269

			   NSI with MARS	 88.430	 0.043	 0.664	 –76.845	 1.156

		  Scan 4	 GEAC	 95.320	 0.000	 0.309	 –65.740	 1.304

			   NSI no MARS	 88.843	 0.025	 0.302	 –55.948	 1.264

			   NSI with MARS	 88.758	 0.026	 0.309	 –54.918	 1.203

		  Scan 2	 GEAC	 91.400	 0.144	 0.425	 –104.050	 1.208

			   NSI no MARS	 85.562	 0.096	 0.631	 –39.708	 1.075

			   NSI with MARS	 85.615	 0.101	 0.641	 –40.187	 1.073

		  Scan 3	 GEAC	 91.456	 –0.064	 0.180	 18.461	 1.580

			   NSI no MARS	 85.263	 0.042	 0.621	 –4.744	 1.549

			   NSI with MARS	 85.318	 0.043	 0.627	 –4.983	 1.547

	 L1	 Scan 1	 GEAC	 68.032	 0.540	 1.125	 –67.214	 1.934

			   NSI no MARS	 62.091	 0.006	 1.113	 –80.595	 2.068

			   NSI with MARS	 62.051	 0.014	 1.127	 –81.016	 2.022

		  Scan 4	 GEAC	 68.032	 0.540	 1.125	 –67.214	 1.934

			   NSI no MARS	 62.040	 0.024	 0.872	 –72.157	 2.046

			   NSI with MARS	 62.129	 0.014	 0.845	 –71.531	 2.030

		  Scan 2	 GEAC	 65.177	 0.355	 0.608	 –103.869	 1.294

			   NSI no MARS	 57.585	 –0.068	 0.987	 –58.709	 1.250

			   NSI with MARS	 57.584	 –0.066	 0.988	 –58.937	 1.241

		  Scan 3	 GEAC	 65.685	 0.491	 0.769	 –90.894	 1.737

			   NSI no MARS	 58.192	 –0.036	 1.029	 –59.605	 1.715

			   NSI with MARS	 58.196	 –0.036	 1.030	 –59.548	 1.706

r  and j. The RMS residuals of the fits are interesting, though. On the whole, the residu-
als at NSI with MARS are about 3 percent smaller than the residuals without MARS and 
also about 3 percent smaller than the corresponding numbers at GEAC. That suggests that 
MARS is improving the NSI solutions a little and that NSI is making marginally better 
measurements than GEAC; but actually the residuals mostly reflect the fact that the single-
phase-center model does not fit the data particularly well. If the fit had been extended to 
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i = 90 deg, however, the RMS at GEAC would have suffered relative to NSI because of mul-
tipath from the compact chamber discussed above.

The most significant phase-center parameter for comparing the two chambers is therefore  
d. Considering the 12 independent measurements, the mean offset of the values for NSI 
with MARS relative to the GEAC values is –6.48 mm with a standard deviation of 0.58 mm. 
If we assume equal variances and independent estimates, that implies that the uncertainty 
of a single undifferenced estimate of d  is 0.58/ 2  = 0.41 mm, and the uncertainty of the 
mean offset is 0.58/ 12 = 0.17 mm. This is both good news and bad. The fact that the dif-
ference between antenna locations measured at two rather different chambers is consistent 
to 0.58 mm argues that the submillimeter accuracy required by GRASP can be achieved 
without extraordinary effort. On the other hand, the 6.5-mm offset — much bigger than 
our measurement uncertainties — implies that we have missed a significant piece of our 
mechanical calibrations. We have looked hard for this piece and continue to look. Addition-
al measurement of the same configurations at a third chamber may help narrow the search.

Even though the phase-center estimates derived from the measurements at GEAC and NSI 
agree well, one can argue that for real measurements in orbit the number that matters is the 
antenna phase in the specific direction of an incoming signal — in other words, the sum 
of the phase model and the residual phase. It seems reasonable to infer that if the models 
and the RMS residuals are nearly identical, then the point-by-point residuals must also be 
nearly the same, but that intuition is easy to test. As an example picked at random, consider 
Scan 2 at the L2 frequency, and look at z = 0 deg. The measurements and models look quite 
different at the two ranges because of the different geometries, but the residuals are gener-
ally the same to within a degree, as shown in Figure 18.
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Figure 18. Difference of residual phases, NSI–GEAC, Scan 2, head angle 0 deg.
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IV. Summary

The GRASP mission requires relative sensor locations on the GRASP spacecraft accurate to 
a millimeter or better. For RF sensors like a GNSS receiver, the sensor location is the effec-
tive position of the antenna, which is determined by measurements at an antenna test 
range. Various types of range are available, but accuracy of a millimeter approaches the 
claimed capability of all of them. To determine whether two rather different facilities agree 
within the GRASP requirements, we have measured the patterns of typical GNSS space-
craft antennas at both and compared the results. We first measured two Exelis antennas on 
choke rings in several configurations at the tapered far-field range at Goddard Space Flight 
Center. Later we duplicated three of those configurations in the spherical near-field range 
at Nearfield Systems, Inc., in Torrance, California. Together, these measurements enabled 
us to measure errors caused by thermal noise, remounting of the antennas, instrumental 
drift, and chamber multipath. Comparison of the Goddard and NSI results also gave a good 
idea of the total uncertainties in antenna location due to all errors (not just those estimated 
explicitly).

In general the two ranges performed about equally well. Errors due to thermal noise and 
remounting of the antennas are generally in the range of a few hundredths of a millimeter 
on a single measurement point, insignificant in relation to GRASP’s requirement. Instru-
mental drift is observable at Goddard but hidden at NSI. If observed, it can be removed, 
but the effect of drift on the estimated antenna location at Goddard is less than 0.01 mm 
even without compensation. Multipath at Goddard appears to be about 40 dB weaker than 
the direct signal but contributes significant phase error of 2 or 3 deg at boresight angles 
near 90 deg, apparently because of reflections associated with an adjacent compact range. 
At NSI, evidence of multipath comes from the adjustments applied by the MARS software, 
which removes most of the effect. These adjustments indicate a multipath level 37 or 38 dB 
below the direct signal before MARS, and the level after MARS is probably more than 50 dB 
below the direct signal.

Direct comparison of locations derived from three GPS frequencies for three different an-
tenna configurations at Goddard and NSI finds a mean offset of 6.48 mm along the anten-
na boresight axis, but the standard deviation of the twelve measurements is only 0.58 mm, 
which we believe reflects the true consistency of the two ranges. We suspect that the offset 
is an error in mechanical calibration and are seeking the cause. Comparison of phase re-
siduals for a particular case from the Goddard and NSI antenna locations shows that total 
antenna phase agrees at the same level as the phase model.
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